

Dipl. Ing. agr.
Sibylle Möcklinghoff- Wicke
Innovationsteam Milch Hessen

Kompostierungsstall Workshop 13./14.03.2019 Weichering

Baukosten aus der Praxis

- Baukosten immer stark abhängig von den örtlichen Gegebenheiten und den Wünschen des Bauherrn!
 - Bsp.: freitragende Halle als Erweiterung zu einem bestehenden Boxenlaufstall für 120 Kühe auf Kompost (1080 m² ohne Fressplatz = 9 m²/Kuh): ca. 1.800 EUR pro Kuhplatz
 - kompletter Stallneubau ohne Unterflurbelüftung für 77 Kühe mit AMS (10m²/Kuh): ca. 5.700 EUR pro Kuh. Ein Boxenlaufstall in vergleichbarer Größe hätte ca. 5.100 EUR/Kuhplatz gekostet.
- Persönl. Mitteilungen: zusätzliche Unterflurlüftung je nach Stallgröße und Ausführung 60.000 – 100.000 EUR Mehrausgaben
- LANDESVEREINIGUNG MILCH

 HESSEN

Komplette Bodenplatte in welcher Ausführung erforderlich?

Ist ein Kompostierungsstall günstiger?

- Vergleichbare Baukosten beim Neubau, weil mehr Grundfläche
- Betonplatte unter dem Stall (in AT nicht erforderlich!)
- Freitragende Halle erforderlich keine Stützen im Liegebereich
- Einsparpotential: Inneneinrichtung und Güllelagerraum (-60%, die in der Liegefläche kompostiert werden)

Zahlen Bauplanung Hessen für 150 Kühe (brutto, schlüsselfertig), 2015 (allg. Baukostensteigerung beachten!)

Stallsystem	Melktechnik	Kosten gesamt	pro Kuh
Kompostierungsstall	AMS	1.540.000 €	10266 €
Kompostierungsstall	Karussell	1.525.000 €	10166 €
Boxenlaufstall, voll unterkellert	AMS	1.440.000 €	9600 €
Boxenlaufstall, voll unterkellert	Karussell	1.495.000 €	9966 €

"geldwerte Vorteile"

- sind schwierig in Euro und Cent auszudrücken....
- Nahezu alle Praxisbetriebe (USA, NL,D, AT, BRA, ARG, NZ) bestätigen eine verbesserte Tiergesundheit, weniger Klauenprobleme, keine Integumentschäden, stabile (niedrigere) Zellzahlen, steigende Milchleistung und insgesamt stressfreie und entspannte Kühe.

Wirtschaftlichkeit - Langlebigkeit

- USA: Wenn Kühe länger bleiben (weniger Abgänge):
 - Ältere Kühe mit höherer Leistung?
 - Weniger Abkalbeprobleme?
 - Weniger Bestandsergänzung nötig (weniger Futter, Arbeit, Stallplatz, Gülle.... für Jungvieh)
 - Bei 100 Kühen bedeutet -1% Abgangsrate = 1Kuh mehr....
 - oder: wenn es 1 Kuh/Färse mehr zum Verkauf gibt, entspricht das einem Wert von 1850 \$.

nach: Maria Bendixen, Clark County Dairy and Livestock Agent

Gleicht "weniger Abgang" die erhöhten Einstreukosten aus?

• USA: 3 Systeme:

nach: Maria Bendixen, Clark County Dairy and Livestock Agent

Anbindestall; Liegeboxenstall; Kompostierungsstall

Unterschiede bei den Einstreukosten

	Tie-Stall	Free-Stall	Compost		
\$/cow/yr	\$20.88*	\$52.01*	\$219.00		
\$/cow/day	\$0.06	\$0.14	\$0.60**		
\$/year	\$2,088 -19812\$	\$5,201 -16,699\$	\$21,900		
* www.finbin.umn.edu ** Estimate					

Niedrigere Abgangsraten allein reichen nicht aus.....

	Anbindestall	Boxenlaufstall
Abgangsrate im Kompost um% besser	6%	2%
für 100 Kuh Betrieb	6 Kühe	2 Kühe
entspricht	11.100 \$	3.700\$

	Tie-Stall	Free-Stall	Compost
\$/cow/day	\$0.06	\$0.14	\$0.60**
\$/ Year	\$2,088	\$5,201	\$21,900
Cull cow/year Value Increase	\$0	\$3700	\$11,100

nach: Maria Bendixen, Clark County Dairy and Livestock Agent

Einstreukosten - 7 Betriebe BW

Ø 230 €/Kuh Einstreukosten

Betrieb	mittlere Einstreukos- ten pro m³	Einstreumenge pro Kuh und Jahr in m³	Einstreu- menge pro Jahr in m³	jährliche Ein- streukosten in € pro Kuh	jährliche Ein- streukosten in € gesamt
1	3	26	2080	78€	6.240 €
2	14	38	2080	511€	28.080 €
3	2	35	2080	69€	4.160 €
4	13	35	2080	440 €	26.416€
5	13	16	600	205 €	7.800 €
6	8	14	1000	112€	7.833 €
7	4	47	3120	189€	12.480 €
MIN	2	14	600	69€	4.160 €
MAX	14	47	3120	511€	28.080 €
MITTEL	8	30	1863	229€	13.287 €

Zusammenfassung der Masterarbeit von Lisa-Maria Mayer am Lehrstuhl für Agrarsystematik, TU München, Wissenschaftszentrum Weihenstephan, Analyse des Verfahrens Kompostierungsstall für Milchkühe auf Praxisbetrieben – 2017 (Abruf LAZ BW Jahresbericht 2018)

Einstreukosten Betriebe Hessen

- 1. Getreideausputz (70%) 80 m³/Wo Pferdemist (Sägespäne); Sägespäne nur im Notfall – ca. 9000 EUR/Jahr bei 120 Kühen
- 2. Hobelspäne/Sägespäne 10 m³/Wo "sehr günstig" – bei ca 25 Kühen
- 3. 80% Sägemehl, 20% Getreideausputz; im Winter 0,6 m³/Kuh im Sommer 0,4 m³/Kuh
- 4. Hackschnitzel, Dinkelspelzen, Sägespäne, getrocknete Gärreste

Weitere Punkte, die Einfluss auf die Wirtschaftlichkeit haben

- Weniger Güllelagerraum erforderlich
- Weniger Gülletransport/Ausbringung nötig
 - Angabe aus der Praxis: 1m³ Kompost = 4 m³
 Gülle
- Arbeitszeitersparnis????
- Nährstoffwert des Düngers????
- Kompostställe in Kombination mit anderem Stallsystem zu nutzen????

Baukostenunterschiede:

1. Güllelagerraum:

 \emptyset 2,4m³/Kuh (10.000 kg)/Mon – 14,4 m³/6 Mon

- 60% im Liegebereich = -8,64 m³

Güllelagerraum kostet ca. 50€/m³

(ALB HE Richtpreise bei 1500m³ Güllebehälter)

Einsparung Güllelagerraum:

8m³ x 50 €/m³ = 400 €/Kuh

6% Jahreskosten = 24 €/Kuh

2. Inneneinrichtung
Liegeboxenabtrennungen: ca 160 €/Boxe
(Freßgitter und Schieber gilt für beide
Stallvarianten, ggf. kann noch der zweite
Schieber eingespart werden – hier nicht
berücksichtigt)

160 €/Kuh Ersparnis Kompostierungsstall
bei ca 6 % Jahreskosten = 9,6 €/Kuh und Jahr
Kostenvorteil Kompostierungsstall

3. Bessere Tiergesundheit

Weniger klin. Mastitis und Senkung

Tankzellzahl

• Klin. Mastitis: ca 400 €/Fall

Zellzahl >200.000/ml bedeutet

- 0,3 bis 0,6 kg/Kuh/d

Zeligehalt HSM (tsd)	Geringere Milchleistung (%)	Verlust / Kuh / Jahr (bei 8000 kg Milchleistung)	Verlust / Herde (70 Kühe, 8000 kg Leistung, 0,30 € pro kg Milch)
200	6	480 kg	10080€
300	8	640 kg	13440€
400	9	720 kg	15120€
1000	15	1200 kg	

Quelle: Dairyherd Improvement 1994)

- 3. Bessere Tiergesundheit Weniger Klauen und Gelenkschäden
 - Klauenerkrankungen: 300-500 €/Kuh
 - Gelenkschäden

Bessere Schlachterlöse Kühe (?)

Geringerer Tierarztaufwand je Kuh (?)

Senkung der Reproduktionrate (?), s. Bsp USA und längere Nutzungsdauer

Gesteigerte Milchleistung

Verbesserte Fruchtbarkeit

4. Arbeitszeitersparnis

Nur Boxenpflege berücksichtigt, Feldarbeiten für Stroh pressen und Einlagern nicht berücksichtigt!

Merkmal	Hochbox ¹ (+weicher Liegebelag)	Tiefbox ¹	Kompoststall ²
Arbeitszeit/ Kuh/Jahr/Min.	95 ¹	265 ¹	51
Arbeitszeit/ Kuh/Tag/Min.	0,351	0,60 ¹	(Beispiel 70 Kühe 10Min/Tag) 0,14

IT: 4,1 AKh/Kuh und Jahr für die Pflege (2013)

Persönl. Mitteilungen aus der Praxis:

10 – 15 min je Bearbeitungsgang für 70 -150 Kühe = 20 min/Tag

Einsparung: 200 min/Kuh/a mit 15€/AKh Lohn 3,3 h x 15 €/h = **50** € Kostenvorteil Arbeit

MILCH

HESSEN

Ökonomische Bewertung

Bsp. 100 Kühe, 10.000 kg, 30% Reprorate, 30% lahme Tiere, 250.000 Zellen, Einzeleffekte pro Jahr

Eingesparter Güllelagerraum	24 €/K
Eingesparte Liegeboxen	9,6 €/K
Verbesserte Eutergesundheit (200.000 Zellen), 10% weniger klinische Mastitiden (1 Mastitis kostet 350-400 €/Fall!)	?? 35 €/K
25% Repro Rate (-5%, 1800 €/Färse – 1800/5a statt 1800/4a)	?? 90€/K
Weniger Lahmheiten, -10% lahme Tiere, weniger schwere Fälle (130-600 €/Lahmheit!)	?? 30 €/K
Verbesserte Fruchtbarkeit, Senkung der ZKZ 18 d (2,5 €/d)	?? 45€/K
Weniger Tierarztkosten (90€ - 15 € = 75 €)	?? 15 €/K
Bessere Schlachtgewichte der Abgangskühe – dafür weniger!	0 €/K
Gesteigerte Milchleistung (+500 kg x 32 ct)	??160 €/K
Weniger Arbeitszeit	?? 50 €/K
Summe der ökonomischen Vorteile ???	?? 80 – 400 €

Viele betriebsindividuelle, ungesicherte Effekte!

Wiegen Leistungssteigerung und bessere Gesundheit/Langlebigkeit die Einstreukosten auf?

Wertigkeit Einstreu steigern durch "Zweitnutzen":

- 1. Bsp.: KuDu
- 2. Kompostmaterial in Liegeboxen einstreuen
- Sägespäne zunächst im Kälberstall, dann im Kuhstall nutzen
- 4. Kompost an Biobetriebe als Humusvariante verkaufen
- 5.

- 5. Verbesserte Düngewirkung des Materials Effekte auf die Nährstoffbilanzierung (?)
- Humusaufbauend im Boden
- Weniger Nährstoff (N) als Gülle
- N Verfügbarkeit sinkt (30% pflanzenverfügbar)
- Keine N Verluste bei der Ausbringung
 - Keine Geruchsbelästigung beim Kompoststreuen!

"Kompost' ist eigenständiger Wirtschaftsdünger

Tabelle 2: Ergebnisse der Kompostuntersuchungen auf Trockensubstanzgehalt, pH-Wert und Nährstoffe

		TS (%)	pH - Wert	N (% in FM)	NH4-N (% i. FM)	P2O5 (% i. TM)	K2O5 (% i. TM)
	Betrieb 1	27,6	8,6	0,443	0,053	0,273	0,758
	Betrieb 2	30,1	8,3	0,450	0,098	0,256	0,582
	Betrieb 3	29,7	8,1	0,422	0,060	0,274	0,565
	Betrieb 4	34,7	8,6	0,537	0,047	0,396	0,901
	Betrieb 5	28,0	8,5	0,409	0,076	0,264	0,813
	Betrieb 6	25,7	8,2	0,431	0,034	0,309	0,592
	Betrieb 7	29,9	7,5	0,586	0,141	0,315	0,755
	MIN	25,7	7,5	0,409	0,034	0,256	0,565
П	MAX	34,7	8,6	0,586	0,141	0,396	0,901
	MITTEL	29,4	8,3	0,468	0,073	0,298	0,709

Zusammenfassung der Masterarbeit von Lisa-Maria Mayer am Lehrstuhl für Agrarsystematik, TU München, Wissenschaftszentrum Weihenstephan, Analyse des Verfahrens Kompostierungsstall für Milchkühe auf Praxisbetrieben – 2017 (Abruf LAZ BW Jahresbericht 2018)

Nährstoffgehalte im Vergleich

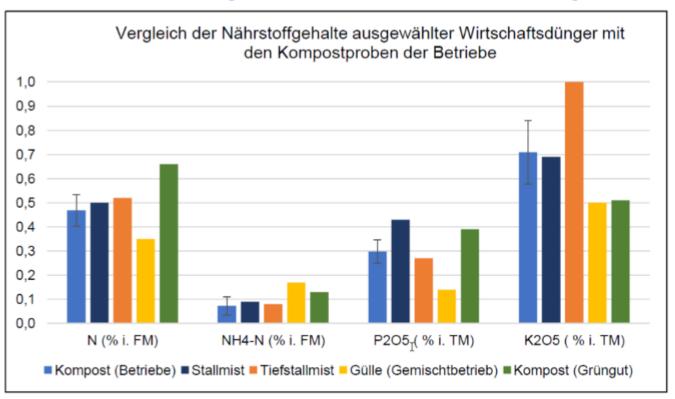


Abbildung 1: Vergleich der Nährstoffgehalte ausgewählter Wirtschaftsdünger mit den Kompostproben der untersuchten Betriebe.

Zusammenfassung der Masterarbeit von Lisa-Maria Mayer am Lehrstuhl für Agrarsystematik, TU München, Wissenschaftszentrum Weihenstephan, Analyse des Verfahrens Kompostierungsstall für Milchkühe auf Praxisbetrieben – 2017 (Abruf LAZ BW Jahresbericht 2018)

Innovationsteam Milch Hessen

- Die Einstreukosten entscheiden maßgeblich, aber die Varianz in Praxis ist groß
- Wieviel Einstreu gebraucht wird, hängt maßgeblich am Management der Liegefläche!
- Pauschale Bewertung der "geldwerten Vorteile" fällt schwer, da nur eine einzelbetriebliche Betrachtung / Bewertung sinnvoll erscheint

Interessante Aspekte

 Der Kompostierungsstall und der produzierte Kompost sind eine wichtige Alternative im Gülle/Mistmanagement und ermöglichen Flexibilität beim Mist ausbringen und liefern organisches Material für die Bodenfruchtbarkeit.

ANDERE VORTEILE FÜR DIE UMWELT:


- Verbesserte Luftqualität Geruch, Treibhausgase
- Reduzierte Fliegenpopulationen
- Güllelager von Kompostställen haben: -
- weniger Nährstoffe weniger Güllevolumen weniger organische Masse

Nachteile

- Einstreukosten:
 - 11 bis 18 € pro m³ Sägespäne
 - 12 bis 20 m³ pro Kuh und Jahr
 - 130 bis 360 € pro Kuh und Jahr
- Bezugsmöglichkeit von Sägespänen/ Einstreu
- Hygiene der Einstreu (bei sep. Güllefeststoffen, Kompost)
- Verbot von Komposteinstreu in NL wg thermophiler Keimbelastung
- Staubbelastung beim Einstreuen
- Kompost in Biogasanlagen (?)
- Langzeitwirkung von Kompost auf
 - der Fläche?

MILCH

HESSEN

Kompostierungsstallinnovativ = nachhaltig?

Sustainability aspect	Criteria	Wood chips 5 farms	Compost 4 farms	Straw 1 farm
Economics	investment			
	Yearly costs			
	longevity			
Cow	Production, health			
	Welfare			
Milk quality	XTAS			
Environment	N losses stable		Prohibited	
	N losses land			
	Ammonia emission stable	2 farms and Dairy Campus		
	Nitrous oxide emission			
Manure Quality	Soil Improver			
	N mineralisation			

INNOVATIONSTEAM MILCH

HESSEN

Ein Team der Landesvereinigung für Milch und Milcherzeugnisse Hessen e.V.

https://www.facebook.com/InnnovationsteamMilchHessen/

www.milchhessen.de

Fragen zum Wohlfühlstall? E Mail: i-team@milchhessen.de